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Approximating families of rational functions can be made nicer (tamed) by
constraining the denominators below and above. Topological properties are
improved, but characterization and uniqueness are more difficult for non-interior
points.

Let X be a compact Hausdorff space and C(X) the space of real
continuous functions on X. For Ya closed subset of X define

Let {¢po-., ¢n} and {lfIl"'" lfIm} be linearly independent subsets of C(X).
Define for A E E n +m (Euclidean (n +m)-space),

Let /1, v be given elements of C(X) such that 0 < /1 ~ v and define

CIl .,,= {A:/1~ Q(A, .)~ v}, (1)

We will assume that Rll,v is non-empty and will study approximation of
jE C(X) by Rll,v with respect to the above norm.

In most cases we will have /1 and v widely separated, but we do not
exclude the possibility of equality at some points.

The primary reason for a study of R
Il

". is that approximation by
admissible rationals R G (rationals with denominators merely required to be
>0, studied by Cheney in his text [3, Chap. 5]) is frequently unpleasant due
to bad topological properties including non-closure of the parameter space
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and convergence in parameters not implying uniform convergence [13,
p. 761. These lead to possible non-existence of best approximations, discon
tinuity of the Chebyshev operator, and failure of discretization 122].
Examination of examples of these bad features suggests that it is
denominators going to zero that cause all of these problems. It might be
thought that if denominators are bounded away from zero, that is, we require
only

8 ~ Q(A, .) (2)

for fixed 8 > 0, all these problems would disappear. This idea is a good one
but not sufficient to solve the problems, as any rational with positive
denominator can be made to satisfy (2) by multiplying all coefficients by a
large constant. Thus if we are going to remove any of the difficulties,
denominators must be bounded above as well as below, hence the bounds of
( I ).

It should be noted that only restriction (2) is given in [9]: however,
perusal of other work of the authors of [91 shows that a normalization is
also intended.

It should be noted that Kaufman and Taylor [2 I I consider a lower bound
on denominators and an upper bound on denominator coefficients.

We first study the topological properties of R".,. to see if the difficulties
above are removed and then study the characterization and uniqueness
problems.

TOPOLOGICAL PROPERTIES

It is seen that the set of coefficients C",I' for R"", is closed and convex.
For convenience we define the parameter norm

IIA II = maxlla i !: i = I,..., n + m f.

DEFINITION. A closed subset Y of X is called parameter bounding if

lllAkllf ~ 00 implies IIR(A\ ')llr~ 00.

LEMMA 1. Let Y be a closed set on which l¢l ,..., ¢n} is independent.
Then Y is parameter bounding.

Proof The constraint (1) bounds the coefficients of Q(A, x) in C" .1' by a
straightforward generalization of a result of Rice [13, p. 24]. Hence if
lilA k II} ~ 00, the coefficients of P(A \ .) are unbounded. By the result cited
in the previous sentence, we must have II P(A \ . )111' ~ 00. But for x E Y,

IR(A k, x)1 = IP(A \ x)I/Q(A k, x)1 ~ IP(A \ x)l/suplv(x): x E Yf,

hence IIR(A k
, ')III'~ 00.
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LEMMA 2. If {A k
} -+A E Cu ,'" then {R(Ak, .)} -+R(A,·)f uniformly on

X.

Proof This classical result follows from Q(A, . ) ~ fJ. > 0.
The above two lemmas imply that Ru.l' satisfies Young's condition [8; 13,

pp. 26-27] and existence follows. The author's paper [4] establishes
continuity of the Chebyshev operator where the best approximation is
unique. Krabs [10] handles discretization with (1) holding only on the set Y
of approximation. The author [8] handles discretization with (I) holding on
all of X.

We have seen that the topological properties of R u .,. are the best possible.
We now consider the price we pay for them. First, as R u ." is a proper subset
of admissible rationals R G , best approximation by R u ," may not be as close.
Furthermore, characterization and uniqueness results are not as simple.

CHARACTERIZATION AND UNIQUENESS

A key set in characterization is

M(Y, A) = {x: If(x) - R(A, x)1 = Ilf - R(A, . )111" x E Y}.

The arguments of the author [5, p. 152] show that R u ," has the betweeness
property. The arguments of Meinardus and Schwedt [11, p. 305; 12, p. 140]
show that Ru.l' has asymptotic convexity, hence it also the second
Kolmogorov property (K2) [2, p.262]. Anyone of these three properties
implies regularity (= being a sun) [2, p. 262]. We have the Kolmogorov-type
characterization:

THEOREM. A necessary and sufficient condition for R(A, .) to be best on
Y is that there exist no BE Cu." with

[f(x) - R(A, x)][R(B, x) - R(A, x)] > 0, x E M(Y, A).

For some applications, equivalent but more convenient characterizations
may be needed.

DEFINITION. R(A,·) is an interior point of R u ,' if R(A,·) can be
expressed as R(B, '), fJ. < Q(B, .) < v.

Remark. The denominator Q(A,.) of a non-interior point must touch
both fJ. and v-if it only touched one, multiplying it by a constant slightly
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less than one or slightly greater than one would give a denominator strictly
between fl and v, hence R (A, . ) would be an interior point.

It is easily shown by convexity or betweeness arguments that an interior
point is best in Ru ." if and only if it is best in R G • Hence the more concrete
characterizations of Cheney [3, pp. 159-1601 or the author [8] for R G can
be used for interior points.

Conversely, it appears to be difficult to get a more specific charac
terization than the above theorem for non-interior points, even if we study
very simple and fixed R(A, .), fl, v. It is expected that characterizations based
on the associated linear space (slightly different but equivalent in [3,8]) do
not apply, as there likely exists {A k} -+ A non-interior with R(A k, .) E Ru,t"

THEOREM. {A: 111- R(A, . )lly:::;; 'l, A E Cu."f is a closed convex set.

Proof Use betweeness [5] and convexity. Strict quasi-convexity of the
approximation problem follows from arguments of Barrodale [11.

The uniqueness problem for regular families has a formal solution in terms
of zero-sign compatibility [2, p.263; 5; 6]. Whether this can be easily
applied is an open question. However, betweeness arguments show that if
R(A, .) is an interior point, R(A, .) is uniquely best in R

U
• 1, if and only if it is

best in admissible rationals R G : thus all the uniqueness results for R G 13,
p. 164; 8] are applicable. In particular we have

THEOREM. Let R(A, .) be an interior point and the associated linear
space be a Haar subspace. Then R(A, .) is unique whenever it is best.

The strong uniqueness theorem [3, p. 165] still holds for interior points as

RU'l' eRG'
Non-interior points may not be uniquely best even in approximation by

ordinary rationals.

EXAMPLE. Let X = [0, 1] and approximate by ratios of constants to nth
degree polynomials, n ~ 2. Let fl = 1 and v = 2. Let 1(0) = 1and I( 1) = O.
As 1:::;; Q(A, .):::;; 2, we must have IR(A, 0)1:::;; 2IR(A, 1)1. It is easily seen
from this that 1/(1 +x) and 1/(1 +x 2

) are best to I on the set {O, 1 f· I can
be extended to [0, 1] so that the error norm of both on X is the error norm
on {O, I}.

Non-uniqueness was expected by Krabs [10, p. 235], but no example was
given.

Uniqueness may hold in the case m = 2.

THEOREM. Let X be a closed finite interval [a, PI. Let fl < v. Approx
imate by ratios of polynomials of degree n - 1 to polynomials of degree 1.
Best approximations by R u ." are unique.
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Proof By previous results, as interior point which is best is unique.
Hence non-uniqueness can occur only if there are two different non
interiorpoints R(A,.) and R(B,·) best. By betweeness or convexity,
R(C, .) = R«A + B)/2, .) is also best. Unless Q(A, x) = Q(B, x) = ,u(x),
Q(C, x) > ,u(x). Unless Q(A, x) = Q(B, x) = vex), Q(C, x) < vex). Hence
Q(C, .) touches both ,u and v only if Q(A, ,) and Q(B, .) are equal at two
points. If this is the case, we must have Q(A, .) == Q(B, .). But best approx
imation by ratios of polynomials of degree n - lover Q(A,') is unique.
The only remaining possibility is that Q(C, .) touches only one or none of
(,Lt, v). But by the remark, R(C, .) is an interior point, hence approximation
by R(C, .) is unique. We have a contradiction to R(A • . ) and R(B, .) distinct
and best.

Remark. Whether strong uniqueness holds when the best approximation
is a non-interior point is open.

A useful property in approximation on a closed interval [a, P] is Rice's
property of varisolvence (unisolvence of variable degree [20, pp. 3ff]). Let us
consider the case in which we approximate by ordinary rational functions.
Standard arguments show that unisolvence of the usual degree holds at
R(A, .) if R(A, .) is an interior point. However varisolvence need not hold at
non-interior points.

EXAMPLE. Let X = [0, 1] and ,u = I, v = 2. Approximate by ratios of
constants to first degree polynomials. Let R(A, x) = 1/(1 + x). Constants in
the range [!, 1] touch R(A, .). Thus R(A,.) cannot have property Z [13,
p. 71; 20. p. 31 of degree 1. It does have property Z of degree 2 by classical
results.

As BE C'l.<' implies IR(B, 0)1 ~ 2IR(B, 1)1, there is no BE Cu ," with

R(B, 0) >R(A, 0) = 1, R(B, 1) <R(A, 1) =!
hence solvence of degree 2 does not hold at R(A, .).

If we let denominators be of higher degree in the example, we still get
solvence of degree ~ 2 failing at R(A, .). The example can be generalized to
any,u, v for which non-constant approximations are in R u .,,'

It is an open question whether particular algorithms for best approx
imation by RG can be readily adapted to maintain the constraint (1). The
differential correction algorithm, both verions of which are discussed by
Barrodale, Powell, and Roberts [14], is adaptable [18]. The convergence
results [3, pp. 171-172; 14; 15] apply: it may be necessary for a rate of
convergence to assume R(A, .) best is unique and an interior point, making
the approximately family like RG in a neighbourhood of R(A, .).

The linear inequality method [3, p. 170] is probably the most easily adap-
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table algorithm. We merely replace -Q(x) ~ -1 in Cheney's formula (1) by
-Q(x) ~ -.u(x) and Q(x) ~ v(x).

Loeb [19] gives two algorithms. The weighted minimax algorithm of Loeb
[3, pp. 170-1711 maintains no constraint on denominators and its behaviour
for R u .v should be similar to its behaviour for R G [16].

GENERALIZATIONS

In real approximation, a natural generalization is to apply a transfor
mation as in [8]. Using transformations preserving Young's condition [7,
p. 611 we get the same topological theory. Using the transformations of [81
we get betweeness and a similar theory for characterization and uniqueness.

Limited extensions to complex approximation are possible. We can replace
the constraint of (1) by .u ~ 1Q(A, . )1 ~ v and we get a similar topological
theory. But betweeness [17, pp. 731-732] may hold only if we assume a real
denominator (a denominator whose argument is fixed at each point of X is
equivalent) with .u ~ Q(A, .) ~ 1'.

With real denominators satisfying (1), betweeness or convexity arguments
show that an interior point is best if and only if it is best in rationals with
positive denominators [17. p. 728]. The uniqueness theory for interior points
is the same as for rationals with positive denominators. The example of non
uniqueness for ordinary rationals with m > 2 and the uniqueness theorem for
ordinary rationals with m = 2 apply to rationals with real denominator
satisfying (1). It should be noted that uniqueness may not hold [17, p. 7321
with m = 3 even if (I) is dropped. Transformations can be used, but those
preserving betweeness appear to be restricted to those mapping straight line
segments into straight line segments [17, p. 7281.

An alternative way to restrict denominators is to replace (1) by

C~.l' = {A:.u < Q(A, . ) < ~, f R~.l' = (R (A . . ): A E C~.l' f: (1')

R~.L" has betweeness and asymptotic convexity as before. R~.l' has a nice
characterization and uniqueness theory--exactly the same as for R G'

Unpleasant behaviour of limits, such as in continuity of the best approx
imation operator or discretization, is eliminated. The price we pay is that
limits may not exist-we have just thrown away all coefficient vectors that
could cause any kind of trouble. We can transform such rationals as in [8]
to get a family with betweeness. The characterization and uniqueness theory
is then the same as in [8].

Extension to complex approximation is possible. Betweeness holds for
rationals whose denominators are required to be positive (hence real [231)
and satisfy (1').
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